Difference between revisions of "Parameter identifiability example"
From BioUML platform
Line 9: | Line 9: | ||
*for auto-generation of an optimization document using the given settings, double click on '''Parameter identifiability (table)'''. | *for auto-generation of an optimization document using the given settings, double click on '''Parameter identifiability (table)'''. | ||
− | + | ==Parameter identifiability (optimization)== | |
<br>[[File:parameter_identifiability_example_01.png]]<br><br> | <br>[[File:parameter_identifiability_example_01.png]]<br><br> | ||
Line 17: | Line 17: | ||
''data/Examples/DAE models/Data/Parameter Identifiability'' | ''data/Examples/DAE models/Data/Parameter Identifiability'' | ||
− | + | ==Parameter identifiability (table)== | |
<br>[[File:parameter_identifiability_example_02.png]]<br><br> | <br>[[File:parameter_identifiability_example_02.png]]<br><br> | ||
Line 24: | Line 24: | ||
<br>[[File:parameter_identifiability_example_04.png]]<br><br> | <br>[[File:parameter_identifiability_example_04.png]]<br><br> | ||
+ | |||
+ | ==Interpretation of results== | ||
+ | |||
+ | ==Other possible profiles== | ||
==References== | ==References== |
Revision as of 16:54, 16 March 2022
Identifiability analysis infers how well the model parameters are approximated by the amount and quality of experimental data [1,2].
Contents |
Reproducing a test case in BioUML
To reproduce a test case below in the BioUML workbench, go to the Analyses tab in the navigation pane and follow to analyses > Methods > Differential algebraic equations.
Identifiability analysis can be run in two ways:
- to use a pre-created optimization document, double click on Parameter identifiability (optimization);
- for auto-generation of an optimization document using the given settings, double click on Parameter identifiability (table).
Parameter identifiability (optimization)
Ready analysis results can be found in the folder:
data/Examples/DAE models/Data/Parameter Identifiability
Parameter identifiability (table)
Interpretation of results
Other possible profiles
References
- Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15):1923–1929.
- Raue A, Becker V, Klingmüller U, Timmer J (2010) Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos, 20(4):045105.